Primary tabs

Metadata Access | High-resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature (xml)

<?xml version="1.0" encoding="UTF-8"?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
  <identifier identifierType="DOI">10.7923/B68T-2S83</identifier>
  <creators>
    <creator>
      <creatorName nameType="Personal">Olsoy, Peter</creatorName>
      <givenName>Peter</givenName>
      <familyName>Olsoy</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0002-8785-0459</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/02e3zdp86" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Boise State University</affiliation>
    </creator>
    <creator>
      <creatorName nameType="Personal">Zaiats, Andrii</creatorName>
      <givenName>Andrii</givenName>
      <familyName>Zaiats</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0001-8978-4152</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/02e3zdp86" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Boise State University</affiliation>
    </creator>
    <creator>
      <creatorName nameType="Personal">Delparte, Donna</creatorName>
      <givenName>Donna</givenName>
      <familyName>Delparte</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0002-9107-5117</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/0162z8b04" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Idaho State University</affiliation>
    </creator>
    <creator>
      <creatorName nameType="Personal">Roop, Spencer</creatorName>
      <givenName>Spencer</givenName>
      <familyName>Roop</familyName>
      <affiliation affiliationIdentifier="https://ror.org/0162z8b04" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Idaho State University</affiliation>
    </creator>
    <creator>
      <creatorName nameType="Personal">Roser, Anna</creatorName>
      <givenName>Anna</givenName>
      <familyName>Roser</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0002-5184-2916</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/02e3zdp86" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Boise State University</affiliation>
    </creator>
    <creator>
      <creatorName nameType="Personal">Caughlin, T. Trevor</creatorName>
      <givenName>T. Trevor</givenName>
      <familyName>Caughlin</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0001-6752-2055</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/02e3zdp86" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">Boise State University</affiliation>
    </creator>
  </creators>
  <titles>
    <title xml:lang="en">Data from: High-resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature</title>
  </titles>
  <publisher>University of Idaho</publisher>
  <publicationYear>2022</publicationYear>
  <resourceType resourceTypeGeneral="Dataset">Dataset</resourceType>
  <subjects>
    <subject subjectScheme="Fields of Science and Technology (FOS)" schemeURI="http://www.oecd.org/science/inno" valueURI="http://www.oecd.org/science/inno/38235147.pdf">FOS: Biological sciences</subject>
    <subject subjectScheme="Fields of Science and Technology (FOS)" schemeURI="http://www.oecd.org/science/inno" valueURI="http://www.oecd.org/science/inno/38235147.pdf">FOS: Environmental engineering</subject>
  </subjects>
  <contributors>
    <contributor contributorType="DataManager">
      <contributorName nameType="Personal">Child, Andrew Wright</contributorName>
      <givenName>Andrew Wright</givenName>
      <familyName>Child</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">https://orcid.org/0000-0001-6666-0739</nameIdentifier>
      <affiliation affiliationIdentifier="https://ror.org/03hbp5t65" affiliationIdentifierScheme="ROR" schemeURI="https://ror.org">University of Idaho</affiliation>
    </contributor>
  </contributors>
  <language>en</language>
  <relatedItems>
    <relatedItem relatedItemType="JournalArticle" relationType="IsCitedBy">
      <relatedItemIdentifier relatedItemIdentifierType="DOI">https://doi.org/10.1002/rse2.359</relatedItemIdentifier>
      <titles>
        <title>High-resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature</title>
      </titles>
      <publicationYear>2023</publicationYear>
    </relatedItem>
  </relatedItems>
  <sizes>
    <size>790.6MB</size>
  </sizes>
  <formats>
    <format>.tif</format>
    <format>.txt</format>
    <format>.r, .rdata, .rds</format>
    <format>shapefile</format>
    <format>.xml</format>
    <format>.kml</format>
  </formats>
  <version/>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf-level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to: (1) determine whether leaf-level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies-cytotype relate to leaf-level temperature. Stomatal conductance was negatively, non-linearly correlated with crown-level temperature derived from UAS. Subspecies identity best explained crown-level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf-level temperature. These results show how fine-scale thermal mapping can decouple the contribution of genetic, phenotypic, and environmental factors on leaf temperature dynamics. As climate-change-induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene-by-environment interactions.</description>
  </descriptions>
  <geoLocations>
    <geoLocation>
      <geoLocationPlace>Orchard Common Garden Idaho USA</geoLocationPlace>
      <geoLocationBox>
        <westBoundLongitude>-115.9986042885067</westBoundLongitude>
        <eastBoundLongitude>-115.9978185806674</eastBoundLongitude>
        <southBoundLatitude>43.32171788561769</southBoundLatitude>
        <northBoundLatitude>43.32237007699626</northBoundLatitude>
      </geoLocationBox>
    </geoLocation>
  </geoLocations>
  <fundingReferences>
    <fundingReference>
      <funderName>National Science Foundation</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/100000001</funderIdentifier>
      <awardNumber awardURI="https://www.nsf.gov/awardsearch/showAward?AWD_ID=1757324">OIA-1757324</awardNumber>
      <awardTitle>RII Track-1: Linking Genome to Phenome to Predict Adaptive Responses of Organisms to Changing Landscapes</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>National Science Foundation</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/100000001</funderIdentifier>
      <awardNumber awardURI="https://www.nsf.gov/awardsearch/showAward?AWD_ID=1826801">OIA-1826801</awardNumber>
      <awardTitle>RII Track-2 FEC: Genomics Underlying Toxin Tolerance (GUTT): Identifying Molecular Innovations that Predict Phenotypes of Toxin Tolerance in Wild Vertebrate Herbivores</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>National Science Foundation</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/100000001</funderIdentifier>
      <awardNumber awardURI="https://www.nsf.gov/awardsearch/showAward?AWD_ID=2207158&HistoricalAwards=false">BIO-2207158</awardNumber>
      <awardTitle>EAGER: Scaling Up Plant Demographic Rates with Imagery from Unoccupied Aerial Systems</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>U.S. Forest Service</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/100006959</funderIdentifier>
      <awardTitle>Great Basin Native Plant Project</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>