Revisions allow you to track differences between multiple versions of your content, and revert back to older versions.

Becker_Keefe_2022_Data_Code

zip directory that contains all the data and code for associated research manuscript submitted to PLOS ONE for review 01/03/2022
Manuscript Title: A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations

Data use:
License: CC-BY 4.0 https://creativecommons.org/licenses/by/4.0/
Citation for dataset reuse:
Becker, R., & Keefe, R. (2022). Activity Recognition Model: Sensor (AS), GNSS, Time and Motion Study (TM), and Individual Tree Data [Data set]. University of Idaho. https://doi.org/10.7923/1VQA-M812

Data Files:
Becker_Keefe_DOI_2022.txt:
Discovery level metadata utilized to establish DOI for dataset

AS_TM_GNSS_Combined folder:
The provided data are the raw sensor data gathered from the Google Pixel smartphones used during the field sampling for the development of the activity recognition models. Additionally, corresponding GNSS locations and observed cycle elements from time and motion study are included and are all matched by time stamps. Data is provided based on the sampling rates used for the study (10, 20, 50Hz) These data are labeled (AS_TM_GNSS_"date collected"_"sampling rate in Hz").
Data Files:
AS_TM_GNSS_8_10_10.csv
AS_TM_GNSS_8_10_20.csv
AS_TM_GNSS_8_10_50.csv
AS_TM_GNSS_8_11_10.csv
AS_TM_GNSS_8_11_20.csv
AS_TM_GNSS_8_11_50.csv
AS_TM_GNSS_9_20_10.csv
AS_TM_GNSS_9_20_20.csv
AS_TM_GNSS_9_20_50.csv
AS_TM_GNSS_9_21_10.csv
AS_TM_GNSS_9_21_20.csv
AS_TM_GNSS_9_21_50.csv
AS_TM_GNSS_9_26_10.csv
AS_TM_GNSS_9_26_20.csv
AS_TM_GNSS_9_26_50.csv
AS_TM_GNSS_9_27_10.csv
AS_TM_GNSS_9_27_20.csv
AS_TM_GNSS_9_27_50.csv

Single_Tree_Data folder:
Individual tree records derived from the lidar acquisition for the study area. These data are labeled (Unit_#_Trees).
Data Files:
Unit_1_Trees.csv
Unit_2_Trees.csv
Unit_3_Trees.csv

Code:
Random_forests folder:
The R code provided gives foundational R-code for random forest model training and final models for all windows (1, 5, 7.5, and 10 seconds) for each of the sampling rates (10, 20, and 50Hz) for natively sampled and downsampled (ds) data.
Code Files:
Random_Forest_10hz_ALL_WINDOWS_ds.R
Random_Forest_10hz_ALL_WINDOWS.R
Random_Forest_20hz_ALL_WINDOWS_ds.R
Random_Forest_20hz_ALL_WINDOWS.R
Random_Forest_50hz_ALL_WINDOWS.R
TRAIN_Random_Forest_10hz_10_ds.R
TRAIN_Random_Forest_10hz_10.R
TRAIN_Random_Forest_20hz_10_ds.R
TRAIN_Random_Forest_20hz_10.R
TRAIN_Random_Forest_50hz_10.R

38 files in this archive

  • Becker_Keefe_2022/
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_10_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_10_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_10_50.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_11_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_11_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_8_11_50.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_20_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_20_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_20_50.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_21_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_21_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_21_50.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_26_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_26_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_26_50.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_27_10.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_27_20.csv
  • Becker_Keefe_2022/AS_TM_GNSS_Combined/AS_TM_GNSS_9_27_50.csv
  • Becker_Keefe_2022/Becker_Keefe_DOI_2022.txt
  • Becker_Keefe_2022/Random_Forests/
  • Becker_Keefe_2022/Random_Forests/.Rhistory
  • Becker_Keefe_2022/Random_Forests/Random_Forest_10hz_ALL_WINDOWS.R
  • Becker_Keefe_2022/Random_Forests/Random_Forest_10hz_ALL_WINDOWS_ds.R
  • Becker_Keefe_2022/Random_Forests/Random_Forest_20hz_ALL_WINDOWS.R
  • Becker_Keefe_2022/Random_Forests/Random_Forest_20hz_ALL_WINDOWS_ds.R
  • Becker_Keefe_2022/Random_Forests/Random_Forest_50hz_ALL_WINDOWS.R
  • Becker_Keefe_2022/Random_Forests/TRAIN_Random_Forest_10hz_10.R
  • Becker_Keefe_2022/Random_Forests/TRAIN_Random_Forest_10hz_10_ds.R
  • Becker_Keefe_2022/Random_Forests/TRAIN_Random_Forest_20hz_10.R
  • Becker_Keefe_2022/Random_Forests/TRAIN_Random_Forest_20hz_10_ds.R
  • Becker_Keefe_2022/Random_Forests/TRAIN_Random_Forest_50hz_10.R
  • Becker_Keefe_2022/Single_Tree_Data/
  • Becker_Keefe_2022/Single_Tree_Data/Unit_1_Trees.csv
  • Becker_Keefe_2022/Single_Tree_Data/Unit_2_Trees.csv
  • Becker_Keefe_2022/Single_Tree_Data/Unit_3_Trees.csv
  • Becker_Keefe_2022/readme.txt

Additional Information

FieldValue
mimetypeapplication/zip
filesize381.06 MB
resource typefile upload
timestampJan 04, 2022